
Sparse Spectral Sampling Gaussian Processes

Miguel Lázaro-Gredilla
Department of Signal Processing & Communications

Universidad Carlos III de Madrid, Spain
miguel@tsc.uc3m.es

Joaquin Quiñonero-Candela
Microsoft Research

CB3 9LB Cambridge, UK
joaquinc@microsoft.com

Ańıbal Figueiras-Vidal
Department of Signal Processing & Communications

Universidad Carlos III de Madrid, Spain
arfv@tsc.uc3m.es

November 2007
Technical Report

MSR-TR-2007-152

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract

In this work we introduce Power Spectral Density Sampling (PSDS), a new
method for building a reduced rank approximation to a stationary kernel ma-
trix. We apply this method in the framework of Gaussian Processes (GP). The
resulting model can be trained in an online fashion: As each training sample
arrives, we can include it in the model using only O(r2) time and storage, where
r is the selected number of spectral samples used in the approximation. For n
training points, the overall cost is O(nr2) time and O(r2) storage. The resulting
GP is properly defined and model hyperparameters can be selected by evidence
maximization. Though it is especially well-suited for low dimensional problems,
it can reach and even outperform other (batch) state-of-the-art sparse GP meth-
ods on higher dimensional datasets if allowed to work in batch mode, learning
the locations of the spectral samples. We check this possibility on some large
datasets.

1 Introduction and previous work

There has been a lot of interest in the past decade in the application of GPs to
machine learning problems. They show state of the art performance in regres-
sion and classification tasks, within a probabilistic framework. However, their
applicability is limited to problems with up to a few thousand samples, since
the kernel matrix must be stored (O(n2) real values) and inverted (O(n3) com-
putation time) during training. They are also most often presented in a batch
setting, where all training samples are available at training time (as opposed to
the online setting [1], where samples are included in the model as they become
available, and inference can be done at any time using the current model). For
a complete treatment of GPs for machine learning see [2].

There have been several proposals to alleviate this problem, bringing com-
putation time down to O(nr2) [3, 4, 5, 6, 7], an overview of which is given in
[8]. Most approaches are based on selecting a subset of the training data using
some information criterion, and then projecting the contribution of the whole
dataset on them. The current state-of-the-art method, the Sparse Pseudo-input
GP (SPGP) [9] uses the concept of pseudo-inputs, which are not part of the
training dataset, but are learned maximizing the log marginal likelihood. In
this work we propose an online method based on approximately reconstructing
the kernel using the inversion formula from the spectral domain, taking samples
at different frequencies. Then, we learn these frequencies to further improve the
model. Though our approach is different, it can learns pseudo-frequencies in a
“dual” way to the SPGP pseudo-inputs learning.

The rest of this paper is organized as follows. Section 2 introduces PSDS
for a general stationary kernel. Section 4 develops the formulation for the case
of the squared exponential kernel and presents the corresponding predictive
equations for GPs. Section 5 demonstrates the performance of the method in
an experimental setting, comparing it with other sparse models, both on a toy

1

problem and larger datasets.

2 Power Spectral Density Sampling (PSDS)

A zero-mean Gaussian process prior on a possibly complex function f(x) is
wholly defined by its covariance function k(x,x′) = E[f(x)f∗(x′)] where ∗ de-
notes complex conjugation, and the indexing inputs vectors x and x′ are D-
dimensional. Stationary covariance functions depend only on the difference
between the inputs χ = x − x′. Bochner’s theorem grants that k(χ) can be
represented as the Fourier transform of a positive finite measure µ.

The spectral density § of µ is a normalized version of the spectrum S̃(s) of
the stationary kernel. Being Fourier duals, k(χ) and S̃(s) related by

S̃(s) =
∫

RD

e−2πis·χk(χ)dχ and k(χ) =
∫

RD

e2πis·χS̃(s)ds . (1)

We can make explicit the contributions of x and x′ and express them as
factors inside the integral:

k(x,x′) = k(χ) =
∫

RD

e2πis·(x−x′)S(s)ds =
∫

RD

e2πis·x
(
e2πis·x

′
)∗
S(s)ds (2)

Spectral densities are often used to illustrate frequency properties of a given
kernel. However, kernel evaluations are most often performed in the original
domain. We aim at exploring the possibility of not evaluating the kernel k(x,x′)
directly, but of using a computationally attractive approximation to expression
(2) to evaluate it.

Stationary covariance functions have constant diagonals, or variances. With-
out loss of generality for the purpose of our approximation, we can choose for
simplicity to impose k(0) = 1, which implies that the spectrum is equal to the
spectral density S̃(s) = S(s), and therefore has the properties of a multivariate
probability denisity in s. With this interpretation, we can choose to consider
eq. (1) and (2) to be expectations and write

k(x,x′) = ES
[
e2πis·x

(
e2πis·x

′
)∗]

(3)

where ES denotes expectation wrt S(s). Thus we are left with the problem of
evaluating the mean of a product of complex exponentials. The exact evaluation
of this average would bring us back to the original expression of the kernel.
Instead, we propose to approximate it by the sample mean.

If we draw a set of r spectral samples sl, l ∈ {1, . . . , r} in RD from S(s), at
which we evaluate the product of the complex exponentials, we obtain r samples
and can then approximately reconstruct the covariance function as a finite sum

k(x,x′) ≈ k̂(x,x′) =
1
r

Re

[
r∑
l=1

e2πisl·x
(
e2πisl·x′

)∗]
, (4)

2

where Re [·] denotes the real part of a complex number. The approximation
becomes exact as r →∞, with the imaginary part of the summation tending to
zero.

It is convenient to introduce matrix notation at this point. If we have n
available samples xj , j ∈ {1, . . . , n}, we can define the usual n× n kernel matrix
K with elements kjj′ = k(xj ,xj′), and a n× r sampling matrix Φ̂ with elements
φjl = e2πislxj . The previous equation can be re-stated as

K ≈ K̂ =
1
r

Re
[
Φ̂Φ̂H

]
=

1
r

[
Re[Φ̂] Im[Φ̂]

] [
Re[Φ̂] Im[Φ̂]

]T
(5)

with Re[φjl = e2πislxj] = cos(2πslxj)

and Im[φjl = e2πislxj] = sin(2πslxj)

where H denotes Hermitian conjugate. To avoid working with complex numbers,
we have expanded the complex exponentials in cosines and in sines. Note that
the approximate kernel matrix has at most rank 2r, which should be chosen to
be less than n.

What we have obtained is an explicit, finite dimensional approximation to
the function that maps points from the input space to the transformed space
implied by the kernel. We can then use linear regression in this transformed
space, of dimension 2r. The kernel matrix can be inverted in O(nr2) time
(the dominating cost of the training process), and the cost of computing the
predictive mean and variance is respectively O(r) and O(r2). There is no need
for active set selection (unlike is the case for example for the three methods
in [3]). Furthermore as we detail in [REF SECTION], an online scheme can
be easily devised where computation of the log marginal likelihood and any of
its derivatives wrt kernel parameters can be achieved in O(r2) time and space
(assuming the hyperparameters are known). We call the application of this
representation in the GP framework PSDS-GP. Despite being an approximation,
k̂ constitutes a valid covariance function by construction. This means that the
resulting GP is well-defined and does not need to resort to “augmentation” to
heal its predictive variance [8].

2.1 How many inducing inputs?

Most sparse models, as PSDS-GP, can be seen as a feature projection of the
input points into a transformed space of dimension lower than n where the
problem can be solved linearly. Such is the case of the three methods proposed
in [3], with the size of the active set defining the dimension of this space. For
SPGP, proposed in [9], the dimension of the transformed space would be the
number of pseudo-inputs. In the unifying framework of [8], for a given sparse
approximation, the number of inducing inputs would determine the dimension
of the transformed space.

This dimension is reasonably used as a basis for comparisons among different
approximations, and it is directly related to the amount of computation required
to train the corresponding sparse model. However, for our proposed model the

3

fair benchmark is unclear: according to the dimension, one could simply state
that the output dimension of the proposed transformation is 2r, or could argue
that the real, latent dimension is r since there we part from r real numbers and
then apply sin and cos functions to obtain the 2r dimensions. This would take
us to the more intuitive conclusion that the fair comparison for our r spectral
samples model is an r inducing inputs model. According to the computational
cost, we could again naively see that it is equivalent to having 2r inducing
inputs.

In the light of this ambiguity, wherever possible we will compare our model
with r spectral samples against alternative sparse GPs that both use r and 2r
inducing inputs. In the remaining cases we will give the alternative model the
benefit of the doubt and 2r inducing inputs.

3 Choosing the sampling points

So far we have assumed the sampling points sl as given. Indeed, any set of
points distributed according to S(s) is valid and will work, and different methods
for sampling from a given distribution can be applied (for instance, MCMC).
Particularly simple is the case of the squared exponential covariance function,
which has a probability density with the same form.

For our implementation, we will use sequences with better space-filling prop-
erties, and which, therefore, are preferred for numerical integration: quasiran-
dom sequences. Without exhaustively verifying the behavior of every proposed
quasirandom sequence, we have selected for our implementation the well-known
Hammersley sequence. For details on the Hammersley sequence and quasi-
montecarlo we refer the reader to [10] and [11]. These sequences are uniformly
distributed over interval [0, . . . , 1]D. In our case we need the same property for
another distribution, S(s). This can be accomplished finding a set of functions
h1 = g1(s), h2 = g2(s), . . . , hD = gD(s), such that their Jacobian is S(s). If
this condition is met, then {gd} constitute a transformation that takes samples
from density S(s) to a uniform density, and inverting them (i.e., obtaining s as a
function of {hd}), yields a transformation from a uniform density quasirandom
sequence to the desired S(s) density sampling points.

For the case in which S(s) can be expressed as a product of the type
S(s) = S1(s1)S2(s2) . . . SD(sD) (where sd are the elements of s), the proba-
bility distribution functions associated to each Sd(d) are a set of functions that
fulfill the above condition.

Deterministically selecting the sampling points in low dimensional problems
fills the space so well that it is difficult to improve the accuracy by moving
their locations. However, when working on higher dimensional problems, we
can use that selection as a starting point, and then learn their positions so
that they minimize the negative log marginal likelihood of the training set. A
disadvantage of doing this (appart from having a minimization problem in rD
dimension) is that the algorithm loses its online ability: Moving the sampling
points implies a new transformation function, and therefore, recomputing the

4

nonlinear transformation of past points. The same happens when pseudo-inputs
are learned. It should also be noted that moving the sampling points away
from their initial positions may lead to another effective stationary covariance
function, since the overall distribution may change.

4 Application of PSDS to the squared exponen-
tial covariance function

We will now develop above formulation for the most widely used stationary co-
variance function, the anisotropic Gaussian, also called ARD (Automatic Rele-
vance Determination) squared exponential:

k(x(j),x(j′)) = σ2
0 exp

(
−1

2

D∑
d=1

θ2d||x
(j)
d − x

(j′)
d ||

2

)
.

In this expression, x(j)
d is the dth component of the jth sample. To obtain

the corresponding spectrum SARD(s), we first set σ2
0 = 1 (so that k(xj ,xj) = 1),

and then conveniently1 define

x(j) =
[
x

(j)
1 θ1 x

(j)
2 θ2 . . . x

(j)
D θD

]T
; χ′ =

x(j) − x(j′)

2π
,

so that we obtain

k(x(j),x(j′)) = exp

(
−1

2
||χ′||2(

1
2π

)2
)

; (6)

SARD(s) = F

{
exp

(
−1

2
||χ′||2(

1
2π

)2
)}

=
1

(2π)
D
2

exp
(
−1

2
||s||2

)
. (7)

Using our definition of χ′, eq. (1), and adding signal variance σ2
0 , we get

k(x(j),x(j′)) = σ2
0

∫
RD

eis·x
(j)
e−is·x

(j′)
SARD(s)ds; K̂ =

σ2
0

r
Re
[
Φ̂n×rΦ̂H

n×r

]
.

As noted before, we can expand the sampling matrix in sines and cosines,
ΦE = σ0√

r

[
Re[Φ̂] Im[Φ̂]

]
, so that we can write K̂ = ΦEΦT

E , with the constant
absorbed.

The predictive equations of a GP using this approximate covariance matrix
are

E[f∗] = φE∗ΦT
E

[
ΦEΦT

E + σ2
nI
]−1

y

V[f∗] = φE∗φ
T
E∗ − φE∗ΦT

E

[
ΦEΦT

E + σ2
nI
]−1

ΦEφ
T
E∗

1This will eliminate the dependence of S(s) on θd and will set its variance to unity.

5

where φE∗ is the extended sampling vector corresponding to test point x∗. Now
we can rearrange the equations by making use of the matrix inversion lemma
and with some algebra:

E[f∗] = φE∗
(
ΦT
EΦE + σ2

nI
)−1

ΦT
Ey (8)

V[f∗] = φE∗
(
σ−2
n ΦT

EΦE + I
)−1

φTE∗ (9)

The dependence of these equations on training data is restricted to matrix
ΦT
EΦE of size 2r × 2r and vector ΦT

Ey of size 2r × 1. Computing them for the
first test point takes O(nr2). Evaluation at additional test points takes O(r)
and O(r2) for the mean and the variance, respectively.

4.1 Obtaining the sampling points and the hyperparame-
ters

Sampling points sl are selected as described in Section 3. The squared expo-
nential covariance matrix is factorizable, so we can use as {gd} the inverse of
the probability distribution F (sd) of each factor:

F (sd) =
∫ sd

−∞

1√
2π

exp
(
− t

2

2

)
dt =

1 + erf(sd/
√

2)
2

;

sd = F−1(hd) =
√

2erf−1 (2hd − 1)

If hd is the dth-component of a point h in a uniform quasirandom sequence in
interval [0, 1), then we can obtain the corresponding sampling point s applying
the previous to all components. If we do this at all {hl} points in the quasiran-
dom sequence, we obtain the desired {sl} sampling points, distributed according
to a zero mean, unit variance Gaussian.

The estimation of the hyperparameters of a GP model is usually accomp-
plished by minimizing the negative log marginal likelihood of the training set.
In most minimizations schemes, derivatives with respect to these parameters
are needed. Also, as noted in subsection 3, we can learn the sampling points,
so derivatives wrt their locations are also needed.

There are a total of D+2 hyperparameters and rD sampling point com-
ponents to optimize. The whole vector of derivatives can be computed in
O(nr2D).They can also be computed online, but now also matrix ΦT

E
∂ΦE

∂θi
of

size 2r×2r and vector ∂ΦE

∂θi
y of size 2r×1 must be stored and updated for each

new sample, which can be done exactly as we did with ΦT
EΦE and ΦT

Ey. The
final expresions of these derivatives are lengthy and ommited here for brevity.

4.2 Online predictive equations

If we call φ(j)
E to the jth row of ΦE , we can express the needed matrices as

6

0 2 4 6 8 10 12 14 16
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Data points
40 spec. samples PSDS−GP
70 spec. samples PSDS−GP
Full GP

−6 −4 −2 0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Data points
Original
After learning

Original After learning
−3

−2

−1

0

1

2

F
re

qu
en

cy
 "

s"

Figure 1: Learning the sinc function (a) full GP and PSDS-GP, (b) effect of
learning the sampling points in PSDS-GP, (c) original and learned sampling
points.

ΦT
EΦE =

n∑
j=1

φ
(j)T
E φ

(j)
E and ΦT

Ey =
n∑
j=1

φ
(j)T
E yj ,

and since φ(j)
E only depends on xj , this yields an online algorithm. When

each data sample {xj , yj} arrives, both matrices can be updated in O(r2). Using
the online method to add new samples instead of directly applying batch eqs.
(8) and (9) has therefore the same computational cost O(nr2), and needs only
O(r2) storage, independent of the number of samples. Predictions with the
model constructed at each step of the online update can be made at O(r2) cost
substituting every appearance of these expressions2 in equations (8) and (9)
with their current value, and operating in the appropriate order.

5 Experiments

5.1 Toy 1D problem

The proposed model approximates the behavior of a GP with stationary kernel
using a linear combination r sines and cosines, with the frequencies given by the
sampling points. In this section we investigate the resulting model in a 1D toy
problem.

Since the model contains only a finite number of samples from the spectrum
of the kernel, the approximation becomes poorer as we move away from the
sampling points. How far we can go while still retaining a good approximation
to the original model depends on the number of samples. In Figure 1.a we train
a 40 samples approximation with a noiseless sinc. With the hyperparameters
obtained, we plot the posterior of the 40 samples PSDS-GP, a 70 samples PSDS-
GP and the full GP. We can see a similar behavior for the three models in

2For this to be true, we must keep an SVD decomposition of ΦT
EΦE constantly updated

(so we do not need to compute the costly inversion in eqs. (8) and (9)). Since all updates are
rank-one, and the first matrix has also rank one, this can be done at no additional cost.

7

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Spectral Sampling Points / Half number of Active Set Points

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

e
E

rr
or

Random active set
PSDS−GP with fixed sampling points
PSDS−GP with learned sampling points
Full GP

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

5

φ

Noiseless function
Random Active Set
PSDS−GP fixed sampling points

Figure 2: On the left, Normalized Mean Square Error for different approxima-
tions are compared. On the right, PSDS-GP with fixed sampling points and
random active set selection as a function φ.

the left part of the plot, but as we move away from the training data, the 40
samples PSDS-GP mean shows a periodic behavior and cannot be used to make
predictions. The 70 samples PSDS-GP is more accurate and can be used to make
predictions on the whole plot, but if we moved furher to the right, it would also
be no longer valid. The conclusion is that the number of sampling points does
not only influence the quality of the aproximation but also the extent of the
validity of the model. One std deviation above and below is also plotted and
seems good enough for the three models. (Notice that the predicted variance
remains approximately constant, oscillations in the plot are due to oscillations
in the mean).

Figure 1.b shows the effect of learning the locations of the sampling points.
First, a model with fixed sampling points is partially trained (training stops
before convergence), and it is plotted with a dashed line. The model is poor,
in part because the length scale has not been properly determined. Then the
sampling points locations are learned minimizing the negative log marginal like-
lihood. Learning the sampling points modifies the effective kernel, and includes
the effect of learning the lengthscale parameters. The result, plotted with a con-
tinuos line is much more accurate. In Figure 1.c we see the expected expansion
on the distribution on the sampling points. Notice that the expansion is not
exactly uniform. Learning the locations is even better that using the original
sampling points with the appropiate lengthscale.

5.2 2D spiral problem

To assess the performance of PSDS-GP in a low dimensional problem, we use
a nonlinear dataset (taken from [12]) generated with x1(φ) = 1

2

√
φ cosφ +

N(0, σ2), x2(φ) = 1
2

√
φ sinφ+N(0, σ2) and f(φ) = ln(1+φ) sin

(
5
2φ
)
+N(0, σ2).

We select σ = 0.1, and φ ∈ [0, 6π]. 1000 points are used for training/testing.

8

We compare random active set selection, PSDS-GP with fixed sampling points,
PSDS-GP learning sampling points and full GP. The more conservative 2r di-
mension assumption from Section 2.1 holds for the comparison. In the left plot
of Figure 2 we show mean squared errors and one std deviation above and be-
low, averaged from ten generations of the dataset. We can see that PSDS-GP
with fixed sampling frequencies is better than simple random selection of the
active set, especially for small sizes. The error variance is also smaller. Both
methods can be applied online, but with 20 spectral samples we achieve higher
accuracy than using a 60 points active set. With 80 spectral samples, the kernel
approximation is quite accurate and we nearly reach the results of a full GP.
Learning the locations further improves accuracy.

5.3 Kin-40k and Pumadyn-32nm datasets

Finally, we run PSDS-GP on the same regression tasks as previous approxima-
tions [3] and [9]. We follow precisely their preprocessing and testing methods.
For each problem, we use ten random test/train splits and average errors are
reported. Datasets are kin-40k (10000 training samples, 30000 testing) and
pumadyn-32nm (7168 training, 1024 testing), both artificially created using a
robot arm simulator. They are highly non-linear and low noise.

For both datasets, we compare the method “smo-bart” from [3] (which is
the best performing of the three compared methods), the pseudo-inputs method
(SPGP) of [9], and PSDS-GP. We first learn the hyperparameters minimizing
the negative log-marginal likelihood, leaving sampling points fixed. The results
of this process are plotted as upward facing triangles. Then we try to further
improve the marginal likelihood by allowing sampling points to move, main-
taining the hyperparameters fixed. These final results are plotted as downward
facing triangles.

Learning the sampling points is quite beneficial in kin-40k. If we compare
PSDS-GP results (Figure3, downward facing triangles) with SPGP learning
both hyperparameters and pseudo-inputs (blue circles), we see we achieve sig-
nificantly better performance, even with the conservative comparison. Since our
method also learns hyperparameters and sampling points, this would be the fair
comparison. If we allow SPGP to fix the hyperparameters to that obtained from
a full GP (red squares), performances are similar. All three methods from [3]
are outperformed.

In the pumadyn-32nm problem, we run into local minima problems when
learning the hyperparameters. This problem is also reported in [3]. When
they tried learning the hyperparameters using random initialization, sometimes
the method failed (leaving them with the same error a linear regressin would),
and some other times convergence was achieved. This happens because only
4 of the inputs are useful to solve this problem, and they must be singled
out. This can be achieved running a full GP on a 1024 point subset of the
training data. We need to do this and initialize the value of the θd corresponding
to meaningless input dimensions close to zero to escape local minima. The
other hyperparameters and meaningful θd are still initialized as above, not from

9

Figure 3: Plots show mean square test error as a function of active/pseudo
sample size. On the left, PSDS-GP errors are plotted as a function of the
number of spectral samples; on the right, they are plotted as a function of twice
the number of samples (the most conservative comparison). Top row plots
correspond to kin-40k, bottom row to pumadyn-32nm. We have added upward
facing triangles (PSDS-GP with fixed sampling points) and downward facing
triangles (letting PSDS-GP learn sampling points) to the plots from [9] (circles
show SPGP with both hyperparameter and pseudo-input learning from random
initialization; squares, for kin-40k, show SPGP with hyperparameters obtained
from a full GP and fixed, whereas for pumadyn-32nm they are only initialized
from the full GP) and from [3] (only best method, “smo-bart”, is shown, using
barred stars). The horizontal lines are a full GP trained on a subset from the
data.

the full GP. Note that this is not a problem with the approximation to the
evidence, since with this initialization the achieved evidence is much higher,
but a problem with the optimization process. Learning the sampling points in
the the pumadyn-32nm problem has nearly no effect (probably due to the low
effective dimension). Results are similar to the other sparse approximations.
Since for this problem some lengthscales are favorably initialized to escape local
minima, SPGP with random initialization (blue circles) is not a fair comparison.

10

However, still four lengthscales and both σ0 and σn are being learnt from random
initialization. In SPGP with red squares all hyperparameters are initialized from
full GP.

6 Conclusions and future work

We have proposed a sparse GP approximation that is similar to frequency dual
of the state-of-the-art pseudo-inputs method SPGP (the SPGP has an addi-
tional white noise process in the prior). The performance of the proposed
approximation in the experiments is better than SPGP when both methods
need to learn the hyperparameters. If they are known, similar performances
are achieved. When fixing the sampling points our methods decreases its per-
formance for higher dimensional problems, but we obtain an online sparse GP
method. PSDS-GP is, therefore, mainly useful for low dimensional problems.

Future lines of this work will include its application to other kernel meth-
ods, and to evaluate the performance when hyperparameters are updated online
(this, together with a forgetting factor for the reduced covariance matrix would
lead to an adaptive algorithm, instead of just an online procedure). This adap-
tiv version could prove to be useful on low dimensional tasks (i.e. typical signal
processing applications).

References

[1] L. Csató and M. Opper. Sparse online Gaussian processes. Neural Computation,
14(3):641–669, 2002.

[2] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. The MIT Press, 2006.

[3] M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed
up sparse gaussian process regression. In C. M. Bishop and B. J. Frey, editors,
AISTATS-9, 2003.

[4] A. J. Smola and P. Bartlett. Sparse greedy gaussian process regression. In Ad-
vances in Neural Information Processing Systems 13. MIT Press, 2000.

[5] V. Tresp. A bayesian committee machine. Neural Computation, 12:2719–2741,
2000.

[6] C. K. I. Williams and M. Seeger. Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13. MIT Press,
2000.

[7] L. Csató. Sparse online gaussian processes. Neural Computation, 14:641–668,
2002.

[8] Joaqúın Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate gaussian process regression. J. Mach. Learn. Res., 6:1939–
1959, 2005.

[9] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs.
In Advances in Neural Information Processing Systems 18, pages 1259–1266. MIT
Press, 2006.

11

[10] J. M. Hammersley. Ann. New York Acad. Sci., 86:844–874, 1960.

[11] W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo integration. J. Comp.
Phys., 122:218–230, 1995.

[12] A. Pozdnoukhov and S. Bengio. Semi-supervised kernel methods for regression
estimation. In IEEE Intl. Conf. on Acoustics, Speech and Signal Processing,
volume 5, pages 577–580, 2006.

12

